library(tidymodels) # Create Recipe model_recipe <- recipes::recipe(what-to-predict ~ data-features, data = your-data) # Define model using parsnip (e.x. linear regression) model_type <- parsnip::linear_reg() # Combine the two to create a workflow model_wflow <- workflows::workflow(model_recipe, model_type) # Fit workflow to data using parsnip model_fit <- parsnip::fit(model_wflow, your-data)
library(tidymodels) # Create Recipe model_recipe <- recipes::recipe(what-to-predict ~ data-features, data = your-data) # Define model using parsnip (e.x. linear regression) model_type <- parsnip::linear_reg() # Combine the two to create a workflow model_wflow <- workflows::workflow(model_recipe, model_type) # Fit workflow to data using parsnip model_fit <- parsnip::fit(model_wflow, your-data)
library(tidymodels) # Create Recipe model_recipe <- recipes::recipe(what-to-predict ~ data-features, data = your-data) # Define model using parsnip (e.x. linear regression) model_type <- parsnip::linear_reg() # Combine the two to create a workflow model_wflow <- workflows::workflow(model_recipe, model_type) # Fit workflow to data using parsnip model_fit <- parsnip::fit(model_wflow, your-data)
library(tidymodels) # Create Recipe model_recipe <- recipes::recipe(what-to-predict ~ data-features, data = your-data) # Define model using parsnip (e.x. linear regression) model_type <- parsnip::linear_reg() # Combine the two to create a workflow model_wflow <- workflows::workflow(model_recipe, model_type) # Fit workflow to data using parsnip model_fit <- parsnip::fit(model_wflow, your-data)