import altair as alt
import numpy as np
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from sklearn.model_selection import GridSearchCV, train_test_split
from sklearn.compose import make_column_transformer
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler
from sklearn import set_config
# Output dataframes instead of arrays
set_config(transform_output='pandas')
sacramento = pd.read_csv('data/sacramento.csv')
print(sacramento)
city zip beds baths sqft type price \
0 SACRAMENTO z95838 2 1.0 836 Residential 59222
1 SACRAMENTO z95823 3 1.0 1167 Residential 68212
.. ... ... ... ... ... ... ...
930 ELK_GROVE z95758 4 2.0 1685 Residential 235301
931 EL_DORADO_HILLS z95762 3 2.0 1362 Residential 235738
latitude longitude
0 38.631913 -121.434879
1 38.478902 -121.431028
.. ... ...
930 38.417000 -121.397424
931 38.655245 -121.075915
[932 rows x 9 columns]